—Chapter 2—

The Electric Field
and Potential
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2-1 The Electric Field

A. COULOMB'S LAW

(1) Coulomb's force
- 919>
- drey 2

The interaction between electric charges at rest is
, 1
Fe_—_ e le £
4mey T
where 7 is the unit vector in the direction from charge 1 to charge 2,

and F is the force acting on charge 2. The unit vector # shows that the
force is parallel to the line joining the charges.

(2) Coulomb's force is additive:

qs
_»
///
r
1 P
.///
[ Xep3
> 2 2 1 qigs 1 g5, (a1+42)qs
F=F,+4+F,;= T+ = 7
137523 7 4ne, 12 4me, 12 4A1reyT?

(3) The work done by the force
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B. THE ELECTRIC FIELD

(1) Faraday proposed: line of force
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Assume that there is a fixed charge in the space. We called it the
source charge. Thus, the magnitude and direction of the electric field
produced by the source charge at a point in space is

-

- F
E=—
qz
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(3) Point charge
The Coulomb's force between two point charges q; and g,:

Applying Gauss's divergence theorem to a point charge

- 10 1 10
V-E=—— rz—z =——1=0
r
The divergence is zero everywhere except at the origin because as r —
0, 1/7? - oo grows faster than r2 — 0.

We thus define
1
V.= =4n8%(r)
T
and obtain

WVV Edr = :L,%ana?’(r) dr :Eq;

R.H.S.:
Since we can have arbitrary shape of the closed surface, the integral
always depends on the net charges enclosed within the closed surface as
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#E -da = 1. Gauss's law
S €o

(4) Arbitrary charge distributions

1 7 Y
4Te, 2 PAaT

i
Il

<

E = —i—J V- f—p(r’) d3r’
4Te, 72

= —i—J4n53(r —1rp(")d3r’
4me,

p(r)

€o
The volume integral becomes

[[7-2tc= [[[ 220~ 2 25 298 =22

(5) Thus, Gauss's law for arbitrary charge distributions
in integral form:

- 1
fE~dc'i=——fp(r)dT
S €0 Jy

in differential form:

(6) For a given p, the electrostatic field E is not uniquely determined by
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V.E"=_p_
€o

According to the Helmholtz theorem, we need another condition: we

can look at the line integral of E around a closed path in this field.
.

path A path B

e

P,

The line integral of the field along path A from the point P; to the

pOlnt P2
Py P2 1
fp E - d§ = JI; Z‘n_—e;;fr (dTT + rdBH + rsin@ d¢¢)
1 1
PZ 1
_ j W
p, 4megr

The line integral for any given electrostatic field E has the same value
for all paths from P; to P,. Thus, the line integral around any closed
path in an electrostatic field is zero.

o)

Then using Stokes' theorem, we get

iEszﬂXVxE)d&:O:VxE:O
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(7) Thus, as E goes to zero at infinitely, we have

V-E= L Gauss's law
€o
VXE=0:"- no name

and E is uniquely determined if p is given.

PROOF:
Suppose both equations are satisfied by two different fields El and EZ.
b=E —F,
VXD=VXE —VxE,=0=D=Vf
VD=V E-VE=C-L-0sv.vr=vf=0
€0 €o

Since E; and E, go to zero at infinity (boundary), and

D=E —E=Vf=0
at the boundary. Thus, f takes on some constant value f; at the
boundary. Since Laplace's equation allows no local maxima or
minima—all extrema occur on the boundaries. So f must be the value
fo everywhere. Hence

5=Vf=0and§1=ﬁz

EXAMPLES:

1. Line charge distribution
A long, straight, charged wire that carries a uniform line charge
A. What is the electric field?
ANSWER:

e Method I:
The contribution of the charge dq to the y component of the
electric field at P is
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dE, = —14 b= 2% oso
Y " 4meyR? cose = 4meR? cos
Since
r=Rcos@
dxcos = RdO = dx = 290 _ 48
X Cose = x_c059_00529
we obtain
g A (cos8 > rde g A 0 do
Y Amey\ T cos2g >V = Ame,r €08
Then, we have
/2
E, = = cos0df = ——
-[—n/z 4megr €08 2megr
e Method II:

Using Gauss's law

= - q 1 - A 1,\
fE-da=——:>E-2an=——L/1:>E:___r
S €o €o 2mey T

2. Hemisphere charge distribution
A solid hemisphere has radius R and uniform charge density p.

Find the electric field at the center.
E

02%EIH



ANSWER:
Consider a tiny piece of the ring, with charge dq.

Because the horizontal component cancels with the horizontal
component only the vertical component survives.

dEy = L_Ln_e__ (an sin @ drd9) cosf@ = 2—'[;; sin @ cos 0 drd6@

/2
f f sin @ cos 6 drdf
260

/2
f drf sinf@ d (sin 9)
260

/2
=2 sin 0|
260 0 2 o
_ PR
TR

. Spherical charge distribution (solid sphere)

A spherical charge distribution has a density p that is constant
from r = 0 out to r = R and is zero beyond. What is the electric
field?
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ANSWER:
Using Gauss's law

Forr = R,

2 14 " R3
%E'da=i=>E'47TT2=——7TR3p=>E=L—21A'
S €o €03 3egT
For r <R,

o 14 N
fE-d& i=>E-47rr2=——m‘3p=>E=er
B €o €3 RI

. Spherical charge distribution (shell)
A spherical charge distribution has a density ¢ that is constant at
r = R and is zero elsewhere. What is the electric field?

r

ANSWER:
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e Method I:

72 =R%*+ 22 —2Rzcos6

1 gcosy .,
EZ = Z-T[_EE __4’“2__R sin @ d9d¢

_OR? (™1 z—Rcos6 _ HdBJZHd
 4mey ), 12 7 st 0 ¢
=27

3 oR? f” —Rcos®
" 260 Jy (R? + 22 — 2Rz cos 6)3/2
Let u = cos 8. We obtain
oR? f‘l z—Ru
du
269 J; (R%+ z2—2Rzu)3/2
oR? (1 z—Ru
= J 2 1,2 372 du
260 J_1 (R? + 22 — 2Rzu)
3 oR?*[1 zu—R !
269 |22 (R% + 22 — 2Rzu)1/?|

sinf do

E,=—

Finally, we get

oR?
EZ — EO—ZE, z=R
o , z<R
e Method II:
Using Gauss's law
For r 2 R,

= . 4 , 1 ) . oR?*
E-di=—=FE 4nr*=—4nR°0c > E = —— T
S €o €o €T

For r <R,

ffﬁ-da 4 p am?=0=EF=0
S €o

. Infinite flat sheet charge distribution
Consider a flat sheet, infinite in extent, with the constant surface
charge density o. Find the electric field.
ANSWER:
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Using Gauss's law

oA
Ep-A+Ep -A=—
€o
Since Ep = Epr, we obtain
o
Ep=—
P 2¢€

6. Two infinite parallel planes carry equal but opposite uniform
charge densities +o. Find the electric field.

ANSWER:
E, E, E,

(1) (i1) (1ii)
E_ E_ E_
(1) (i1) (iii)

+C -c +0 o
£ - o Y
T 2¢’ - 2¢,
Therefore,

in region (i) E =0
in region (ii) E = E, + E_ =

€o
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in region (iii) £ = 0
The field between the plates is a/€,, and points to the right;
elsewhere it is zero.
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2-2 Electric Potential

A. POTENTIAL

(1) Using Stokes' theorem, we obtain

iﬁ-d§:ﬂs(v><§)-d&

Since the electrostatic field is an irrotational field, i.e., V X E= 0, thus,
we have

fﬁ d§=0
¢
Consider two paths A and B:

. P

path A path B

Vi
ds

e
Py

PZ—) Pl—)
j E-d§+j F-dg=0

Py P
path A path B
Py Py
- N - N
j E -ds— j E-ds=0
Py Py
path A path B

Thus, the line integral is independent of path, i.e., the work done by
the electric field is independent of path,

8- ds == (oe) - 0(7)

1
where @ is a scalar function and the minus sign indicates that the

increase of the work done by the electric field is equal to the decrease
of the function.
Then, we can define a scalar quantity Ag without specifying any
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particular path:
)
Ap == | E -ds - electric potential difference
Py
Since the line integral of a gradient is given by |c.f.1-2]

P,
Vo -ds = @(P;) — ¢(P,)

P
thus, we obtain
E= )

The electric field points from a region of greater potential toward a
region of lesser potential, whereas the vector V@ is defined so that it
points in the direction of increasing .

(2) Suppose we hold P; fixed at some reference position. Then A becomes

a function of P, only, i.e.,

T

(p(r):_fﬁ.dg ..... (a)

Py
Once the vector field E is given, the potential function @(r) is
determined, except for an arbitrary additive constant allowed by the
arbitrariness in the choice of P;. Thus, @(r) is a scalar function of
position, i.e., its value at a point is simply a number and has no
direction associated with it.

EXAMPLES:
1. A long, straight, charged wire that carries a uniform line charge
A. What is the potential?
ANSWER:

From Gauss's law, the field outside is

E_ A 1,\
_Zneorr
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-
(p(r)=—f§-d§
To
==L [ L ('t + 166 + 1 5in6 dp)
= " nes ror,r rt+r r'sinfdoo
A (1
=———| —dr

!
2meg Jpy T

— /1 1 !
© 2me, nr

T

To

= ———Inr + constant
21e

2. Find the potential inside and outside a spherical shell of radius R
that carries a uniform surface charge . Set the reference point at
infinity.

ANSWER:
From Gauss's law, the field outside is
o 1 q . 1 4mR%0 o R?

= —7 = f=—-——
4mey r? dme, 1?2 €9 T2
For points outside the sphere (r = R):

-
cp(r)=—j§-d§

€T
The field inside is
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E=0
For points inside the sphere (r < R), we must break the integral
into two pieces:

R g R? r oR? 1|
o) = —f ——dar’ —J 0dr'=——
o €07 R € Ty

€o

The potential is not zero inside the shell, even though the field is.

. Find the potential inside and outside a uniformly charged solid
sphere whose radius is R and total charge is q.

ANSWER:

From Gauss's law, the field outside is

- 1 gq .

" 4mey 12
For points outside the sphere (r = R):

cp(r)=—f§-d§

"1 q . . ~ . 7
- _f — L s (dr'd + 106 + 1 sin 0 dpd)

From Gauss's law, the field inside is
- 1
F-__ 4

41e, R3
For points inside the sphere (r < R), we must break the integral
into two pieces:

A

rr
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= [ o Lar [ Lar
o= 41r€ey T2 r R4T[€0R3T r

[oe]

__9 __ 4
4megR  4meyR3
2

_q (1 r 1
—ET?O<§‘5R—3 +§E>
q 1 r?

" 4meo 2R <3 N RZ’)

B. POTENTIAL OF A CHARGE DISTRIBUTION

12

1
Zr

(1) From equation (a), we have the potential as

,
@) =— f E-d3
Py
For a continuous charge distribution, the field is

B 1 7 ") de’
 4mey )y prImIaT
Thus, we obtain
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EXAMPLES:
1. Find the potential on the axis of a uniformly charged disk of
radius a.

(0, v, 0)

ANSWER:
r?=y%4s?
1 o(r’)
=— | 244
°(r) 4me r
! j g sdsdd
= —sds
4me, \/}_,2 +s

For y > a, we can approximate

—— _a_2 1a? a?
\/y_+a —y=y 1+37‘—y=y 1+E;}E+"' —y R —
Thus, we obtain

o a? oa® q

¥ =262y ey dmepy

2. Find the potential on the rim of a uniformly charged disk of
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radius a.

ANSWER:
R = 2acos@
) = 1 a(r’)d ,
P " 47e, r 4
1 o
= f—rdrd@
4meg ) T
-7 f “dr do
o f Rd6
" 4me,
o /2
= f 2acos 0 do
dmeo J_r)2
_oa
N Eq

3. Find the potential of a uniformly charged spherical shell of radius
R.

<

i1
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ANSWER:

7% =R?+ 2% —2Rzcosb’
) = 1 a(r’)d ,

o= 41e 7 4

_ 1 f o
4mey ) VR? + z2 — 2Rz cos 0’

R?sinf'd6’d¢’

Since
21
j d¢' =2n
0
" sin@' do’ 1 i
f = —/R2 + 22 — 2Rz cos 0’
o VR?+2z%2 —2Rzcosf’' Rz 0
1
=—((R+z—|R-
—(R+z—IR=2])

2/z, ifz=R
2/R, ifz<R
Thus, we obtain

O'R2 2 o'R2
__.27-[._‘ _ ZZR
(T') _ 477,'60 z €0Z
¢ OR2 2~ \oR
- 27— _—, z<R
4‘7'[60 R €o

. Find the potential inside a uniformly charged solid sphere whose

radius is R and total charge is q.
ANSWER:
7?2 =7r%+2%2—-2rzcosf’
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1 (pG")

= |y
¢ () 4me r '
1
_ f P r2sin@’ dr'do'd¢’
4meg ) \r'2 + 22 — 2r'zcos 6’
Since
21
de¢' =2n
0
m sin@’ do’ 1 &
f = —,—\/r’z +2z2—2r'zcos @’
o Vr'2+2z2—2r'zcos@' T’z o

1
=r—,Z—(r’+Z— Ir’ — z])

_|2/z, ifr<z
2/, ifr>z
Thus, we obtain

“1 k1
o) = L4 [f —r'2dr' + f —r? dr]
4meg 0 Z , T

3
pFi+1m 1 s

2
__4 31(, 2
41ey R3 2 3

5. Find the potential of a dipole.
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£r2

L2

-
ANSWER:

1

- 4me 12 12
r2+7}——rlc059 r2+1—rlcos(n—9)

In the limit r > [, we have

1 _ 1
Jre e ricose
re+ T~ rlcos@
_ 1
T r
Thus, we obtain
q 1

_1+l 9+l23 2(91+
ZT'COS TZ 8COS 8

1

¢= 4me I2 12
r2+7}——rlc059 re+

elr (17t 5 (e
————— 1+-=cosf |——(1+-=cos(r—0)
r r 2r

T rlcos(m — 60)
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The quantity ql is called the electric dipole moment denoted by
p =ql.
The field is
E= Vo
_0p, 109 1 Jdo .
B arr r 060 rsinf d¢
ql 2cos8_ 1 ql sinf .
7+ 0

ql A
=—7 (2 +
2 eor3( cos@ 7 sm99)
. Find the potential of a linear quadrupole.

Z

P
d r
) y
///
/ d
x’
ANSWER:

In the limit r > [, we obtain

q 1 1
@ = -
4me (\/rz + d? — 2rd cos 6 \/rz + d? — 2rd cos(m — 9))

o (D) (Beoszg L)) 2
T 4mey | 7 08 7z )\ 2% 2 r
1 d d*\ (3 1
+=|1+—=cos(m—0)+|—||zcos?6 —=
r r r? J\2 2

_ 2qd*3cos?6 -1
" 4re, 2r3
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The quantity 2qd? is called the electric quadrupole moment
denoted by Q = 2qd?.
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2-3 Conductors
ELECTROSTATIC INDUCTION

Consider a conductor in an external electric field E
Eo

s o s o 2 o o b o o S SR

[N A O Y I I B

The field will drive free positive charges to the right, and negative ones

to the left. These induced charges would be redistributed due to the
Coulonb's force between other charges.

Inside a conductor, the field of the induced charges, El has the opposite
direction of the external field EO, cancel the original field. Charge will
continue to flow until this cancellation is complete, and the resultant
field inside the conductor is precisely zero.

Let S be a closed surface inside the conductor. By Gauss's law

This implies that no net charge inside the conductor, and the charge
must all reside on the surface.
Since
E= -V = 0 = @ = constant
a conductor is an equipotential at all points inside.

Outside a conductor, if there were a tangential component to the field
at the surface, the charge would again move to eliminate it.

This implies that, in equilibrium, at the surface, the field E is normal
to the surface

E=Elﬁ
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Since
EII = —Vgurface = 0= @ = constant
a conductor is an equipotential on the surface.

B. SCREENING AND SHIELDING

(1) Consider an uncharged spherical conductor containing a cavity with
any shape and put a charge in somewhere within the cavity.

Gauss
surface

Since inside the conductor the net field must be zero, thus we have

= - q
fé'daz enc=0:>Qenc:q+qmd=0:>qind:_q
S:O EO

The charge —q is induced on the inner surface. Thus, there must be a

charge 4+q on the outer surface to maintain the zero net field inside the
conductor.
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Since the asymmetrical influence of the point charge +q is negated by
that of the induced charge —q on the inner surface, the charge +q is
therefore distributed uniformly over the surface.
Thus the shape of the cavity is regardless and the field outside the
conductor is

qa

fﬁﬁ-d&=E4m‘2 =i:E=———2r
B €o 4megr

EXAMPLES:
1. A positive point charge Q is at the center of a spherical
conducting shell of an inner radius R; and an outer radius R,.

Determine E and @ as functions of the radial distance R.

> + O\
\
/ + +\
/ \
|+ +)
\\ . /l
+ %
/
AN /
~ " Conducting
SE~— " el
ANSWER:
« For R >R,
}g E - dd = EAmR? =2:>E=_£_2.
S1 € 4meyR
R R
Q Q
R) =— EdR = — dR =
(p( ) -[oo J;O 4'7T60R2 47'[60R

e For Ry, <R<R,
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E=0
Since the conducting shell is equipotential, hence @(R) = (p(Ro)

Q
R)=—%
(p( 0) 4megR,
e For R < R;
ff E-dd = EAnR? =2=>E=_2_2.
81 €o 4meyR

_ . Q
9o(R) = fEdR+C—4nEOR+C

Since at R = R;, we have (p(RL-) = (p(RO), that is,

1 1
Q-2 ot 1
4megR; 4megR, 4meg \R, R;
Thus, we obtain

1 1 1
=L (L1 1)

4re,

(2) Consider a conductor together with a point charge external to its

volume.
ST .
- +
— //f—“‘\. ==
— s b
s
. = & =
+q - +
i b L
—_— -

The line integral is zero for any electrostatic field:

B A

fE -ds = '[ Ecavity - ds +f Econductor - d5 =0
c A B

Since

Econductor = 0
thus, we obtain

B -
f Ecavity +ds =0
A
We can conclude that
Ecavity =0
which implies that and any object placed inside the cavity is

025 30H



completely screened or shielded from the electrostatic effects of the
exterior point charge gq.

<5 T
= 4
i 27> +
> — /7 +
/
e » — / R
+q » L= l\ +
» = S 5
= ++
o

Thus, every electric field line that leaves g terminates on the outer
surface of the conductor or goes off to infinity.
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2-4 Capacitance

CAPACITANCE

Conductors are used to store electric charge because their surfaces are

easily accessible. We use the concept of capacitance to measure the

quantitative capacity of any particular conductor to store charge,

whether in isolation or in the presence of other conductors.

Suppose we have two conductors,

+0 -0

Since @ is constant over a conductor, the potential difference between
them is:

Ap=¢@(H)—9(-) =0

Ag = f(+)5 45 = —1 R f()r,d’ =qz
= &) 5_4116017 Y ' r t=d

Hence the capacitance is defined by
q

" Ao

and

EXAMPLES:
1. Consider a uniformly charged conducting sphere with total charge
Q and radius R. Find the capacity.

+ * +

ANSWER:
The voltage difference at the radius R relative to infinity, where
we define @(o0) = 0 as ground, is given by
Q
Ap = @(R) — =@R) =———
¢ =¢[R) - @(») =¢R) IreR
The capacitance C of the sphere is then defined by

0RERH



C= i = 4megR
Ap

The larger the sphere, the greater its capacity to hold charge at a
given A@.

. Find the capacitance of two concentric spherical metal shells,
With radii a and b.

¢ 2

a ).
ANSWER

o j“f ool (L
=) * T 4me\a b

The capacitance C is then defined by

= Q 1 4 ab
_E_m_ T0u=b
4meg\a b

. Find the capacitance per unit length of two coaxial metal
cylindrical tubes, of radii a and b.

a

b

ASNWER:
A Q
Ap=—| E-d§=—-——(na—Inb) = — ———-l—
¢ J;, $= "o, na—Inb)=—>o T iny
The capacitance C per unit length is then defined by
C= Q 1 _ 2mé€
Th¢ T L b b
ZnEOLlna 1na

. Consider two parallel conducting plates with opposite charges
+ Q, separated by a distance d, which is called parallel-plate
capacitor.

02533 H



| n +
I : : + o+ :
I F +
JE g + + +
A + 4+ +
Jod I + il
e L + 3 +
i e
, -
0 d ¢
The total charge is
Q=04
The electric field between the plates is given by
- O
E=—yp
€o Y
The potential difference between the plates is then obtained as
A = o(+) ()_0( )_ad_aAd_Qd
=09 ¢ T e Y2 —V1 T TG A A

Hence the capacitance is

Q€A

A d
The larger the area A, and the smaller the separation d, the
greater the capacity to hold charge at a given Ag.

B. GROUND A CONDUCTOR

(1) The Earth has been considered as a very large charge reservoir that it
has

Carth = 4m€QR — 00 and Qpgarm = 0

Thus, finite amounts of charge may be added to or taken from its
surface without appreciably changing its potential from zero.

(2) We ground a conductor (fix its potential at zero) by connecting it to
Earth using a fine conducting wire.

025FE3MH



If the conductor initially has a net charge Q, the connection to ground
causes this charge to spontaneously flow to the Earth. This lowers the
potential energy of every charge on the conductor and leads to a final

equilibrium state of ¢ = 0 for the conductor.
ie

o Ly

An initially uncharged conductor will draw charge up from ground due
to Coulomb attraction in the presence of a nearby charge q.

C. COEFFICIENTS OF CAPACITANCE

(1) Consider any number of conductors of some given configuration.
_Q

7

Q

Connecting conductors 2 and 3 to the ground. We obtain

Q1 = C11¢91
Q2 = C21¢04
Q3 = C31¢01

(2) If the potentials are @1, @,, and @3, none of them necessarily zero.

025355



We obtain

Q1 = C11¢01 + Ci2¢02 + (1303
Q2 = (2191 + Co02 + (303
Q3 = (3191 + (320, + (3303

In matrix form

Q1 Ci1 G2 Gy (1

Q2 | =|Co1 (o Coz || P2

Qs C31 G35 C33) \ @3
EXAMPLES:

1. A flat metal box has zero potential. There are two plates in the
box. Find the capacitance coefficients.

}
A— 1

f ; | 5
!
f
ANSWER:
With the potential of the box chosen to be zero, we can write, in
general,

Q1 = C11¢1 + C120;
Q2 = C2191 + C2202
Consider the case where @, is made equal to zero by connecting

plate 2 to the box.
p=0

* E, =q@/r
P1 I

¢ E;=qys
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* E, =q@/r
P1 I

i E;=qys

¢, =0
/ E,=0

=0
Then the fields in the three regions are E, = @,/7, Es = @,/5,
and E; = 0.
Gauss's law with a thin box completely surrounding plate 1 tells
us that

-2

_Q P (P1> @ _ 1 1
ErA+ESA—EO:(r +s A—EO=>Q1—60A r+s ®1

Thus, we obtain

Ci1 = €pA 1+1
11 = €o UL

Also, Gauss's law with a thin box completely surrounding plate 2
tells us that

Q2 P1 Q2 €04
—FEA=—>-——A=—=0,=——
s € S € Q2 S P1
Thus, we obtain
€04
Cyry = ——
21 S

Similarly, connecting plate 1 to the box, we can also obtain

Cyr = €A 1+1
22 = €p PRI

and

Cip = ———
12
S
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